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I. RYDBERG DATA

The input data for hydrogen and deuterium for the
least-squares adjustment are given in Table I and their
covariances are given as correlation coefficients in Ta-
ble II. The δs given in Table I are quantities added to
corresponding theoretical expressions to account for the
uncertainties of those expressions, as discussed in Ap-
pendix A.

APPENDIX A: Theory relevant to the Rydberg constant

This appendix gives a brief summary of the theory of
the energy levels of the hydrogen atom relevant to the de-
termination of the Rydberg constant R∞ based on mea-
surements of transition frequencies. It is an updated ver-
sion of an earlier review by one of the authors (Mohr,
1996) and a subsequent review in CODATA-98. In this
appendix, information to completely determine the the-
oretical values for the energy levels used in the current
adjustment is provided. Results that were included in
CODATA-98 are given with minimal discussion, and the
emphasis is on results that have become available since
then. For brevity, references to most historical works are
not included. Eides, Grotch, and Shelyuto (2001b) have

recently provided a comprehensive review of the relevant
theory.

It should be noted that the theoretical values of the en-
ergy levels of different states are highly correlated. For
example, for S states, the uncalculated terms are primar-
ily of the form of an unknown common constant divided
by n3. This fact is taken into account by calculating
covariances between energy levels in addition to the un-
certainties of the individual levels as discussed in detail in
Sec. A.12. To provide the information needed to calculate
the covariances, where necessary we distinguish between
components of uncertainty that are proportional to 1/n3,
denoted by u0, and components of uncertainty that are
essentially random functions of n, denoted by un.

The energy levels of hydrogen-like atoms are deter-
mined mainly by the Dirac eigenvalue, QED effects such
as self energy and vacuum polarization, and nuclear size
and motion effects. We consider each of these contribu-
tions in turn.

1. Dirac eigenvalue

The binding energy of an electron in a static Coulomb
field (the external electric field of a point nucleus of
charge Ze with infinite mass) is determined predomi-
nantly by the Dirac eigenvalue

ED =
[
1 +

(Zα)2

(n− δ)2

]−1/2

mec
2 , (A1)

where n is the principal quantum number,

δ = |κ| −
[
κ2 − (Zα)2

]1/2
, (A2)

and κ is the angular momentum-parity quantum num-
ber (κ = −1, 1,−2, 2,−3 for S1/2, P1/2, P3/2, D3/2, and
D5/2 states, respectively). States with the same princi-
pal quantum number n and angular momentum quan-
tum number j = |κ| − 1

2 have degenerate eigenvalues.
The nonrelativistic orbital angular momentum is given
by l = |κ + 1

2 | −
1
2 . (Although we are interested only

in the case where the nuclear charge is e, we retain the
atomic number Z in order to indicate the nature of var-
ious terms.)

Corrections to the Dirac eigenvalue that approximately
take into account the finite mass of the nucleus mN are
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TABLE I Summary of principal input data for the determination of the 2002 recommended value of the Rydberg constant R∞.
[The notation for the additive corrections δX(nLj) in this table has the same meaning as the notation δX

nLj in Appendix A,
Sec. A.12.]

Item Input datum Value Relative standard Identification
number uncertainty1 ur

A1 νH(1S1/2 − 2S1/2) 2 466 061 413 187.103(46) kHz 1.9× 10−14 MPQ-00
A2 νH(2S1/2 − 8S1/2) 770 649 350 012.0(8.6) kHz 1.1× 10−11 LK/SY-97
A3 νH(2S1/2 − 8D3/2) 770 649 504 450.0(8.3) kHz 1.1× 10−11 LK/SY-97
A4 νH(2S1/2 − 8D5/2) 770 649 561 584.2(6.4) kHz 8.3× 10−12 LK/SY-97
A5 νH(2S1/2 − 12D3/2) 799 191 710 472.7(9.4) kHz 1.2× 10−11 LK/SY-98
A6 νH(2S1/2 − 12D5/2) 799 191 727 403.7(7.0) kHz 8.7× 10−12 LK/SY-98
A7 νH(2S1/2 − 4S1/2)− 1

4
νH(1S1/2 − 2S1/2) 4 797 338(10) kHz 2.1× 10−6 MPQ-95

A8 νH(2S1/2 − 4D5/2)− 1
4
νH(1S1/2 − 2S1/2) 6 490 144(24) kHz 3.7× 10−6 MPQ-95

A9 νH(2S1/2 − 6S1/2)− 1
4
νH(1S1/2 − 3S1/2) 4 197 604(21) kHz 4.9× 10−6 LKB-96

A10 νH(2S1/2 − 6D5/2)− 1
4
νH(1S1/2 − 3S1/2) 4 699 099(10) kHz 2.2× 10−6 LKB-96

A11 νH(2S1/2 − 4P1/2)− 1
4
νH(1S1/2 − 2S1/2) 4 664 269(15) kHz 3.2× 10−6 Yale-95

A12 νH(2S1/2 − 4P3/2)− 1
4
νH(1S1/2 − 2S1/2) 6 035 373(10) kHz 1.7× 10−6 Yale-95

A13 νH(2S1/2 − 2P3/2) 9 911 200(12) kHz 1.2× 10−6 Harv-94
A14.1 νH(2P1/2 − 2S1/2) 1 057 845.0(9.0) kHz 8.5× 10−6 Harv-86
A14.2 νH(2P1/2 − 2S1/2) 1 057 862(20) kHz 1.9× 10−5 USus-79

A15 Rp 0.895(18) fm 2.0× 10−2 Rp-03

A16 νD(2S1/2 − 8S1/2) 770 859 041 245.7(6.9) kHz 8.9× 10−12 LK/SY-97
A17 νD(2S1/2 − 8D3/2) 770 859 195 701.8(6.3) kHz 8.2× 10−12 LK/SY-97
A18 νD(2S1/2 − 8D5/2) 770 859 252 849.5(5.9) kHz 7.7× 10−12 LK/SY-97
A19 νD(2S1/2 − 12D3/2) 799 409 168 038.0(8.6) kHz 1.1× 10−11 LK/SY-98
A20 νD(2S1/2 − 12D5/2) 799 409 184 966.8(6.8) kHz 8.5× 10−12 LK/SY-98
A21 νD(2S1/2 − 4S1/2)− 1

4
νD(1S1/2 − 2S1/2) 4 801 693(20) kHz 4.2× 10−6 MPQ-95

A22 νD(2S1/2 − 4D5/2)− 1
4
νD(1S1/2 − 2S1/2) 6 494 841(41) kHz 6.3× 10−6 MPQ-95

A23 Rd 2.130(10) fm 4.7× 10−3 Rd-98

A24 νD(1S1/2 − 2S1/2)− νH(1S1/2 − 2S1/2) 670 994 334.64(15) kHz 2.2× 10−10 MPQ-98

A25 δH(1S1/2) 0.0(1.7) kHz [5.3× 10−13] theory
A26 δH(2S1/2) 0.00(21) kHz [2.6× 10−13] theory
A27 δH(3S1/2) 0.00(12) kHz [3.2× 10−13] theory
A28 δH(4S1/2) 0.000(43) kHz [2.1× 10−13] theory
A29 δH(6S1/2) 0.000(18) kHz [2.0× 10−13] theory
A30 δH(8S1/2) 0.0000(83) kHz [1.6× 10−13] theory
A31 δH(2P1/2) 0.00(63) kHz [7.7× 10−13] theory
A32 δH(4P1/2) 0.000(79) kHz [3.9× 10−13] theory
A33 δH(2P3/2) 0.00(63) kHz [7.7× 10−13] theory
A34 δH(4P3/2) 0.000(79) kHz [3.9× 10−13] theory
A35 δH(8D3/2) 0.0000(25) kHz [4.8× 10−14] theory
A36 δH(12D3/2) 0.000 00(74) kHz [3.2× 10−14] theory
A37 δH(4D5/2) 0.000(20) kHz [9.7× 10−14] theory
A38 δH(6D5/2) 0.0000(59) kHz [6.4× 10−14] theory
A39 δH(8D5/2) 0.0000(25) kHz [4.8× 10−14] theory
A40 δH(12D5/2) 0.000 00(73) kHz [3.2× 10−14] theory

A41 δD(1S1/2) 0.0(1.5) kHz [4.5× 10−13] theory
A42 δD(2S1/2) 0.00(17) kHz [2.1× 10−13] theory
A43 δD(4S1/2) 0.000(41) kHz [2.0× 10−13] theory
A44 δD(8S1/2) 0.0000(81) kHz [1.6× 10−13] theory
A45 δD(8D3/2) 0.0000(21) kHz [4.2× 10−14] theory
A46 δD(12D3/2) 0.000 00(64) kHz [2.8× 10−14] theory
A47 δD(4D5/2) 0.000(17) kHz [8.4× 10−14] theory
A48 δD(8D5/2) 0.0000(21) kHz [4.1× 10−14] theory
A49 δD(12D5/2) 0.000 00(63) kHz [2.7× 10−14] theory
1 The values in brackets are relative to the frequency equivalent of the binding energy of the indicated level.
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TABLE II Non-negligible correlation coefficients r(xi, xj) of the input data related to R∞ in Table I. For simplicity, the two
items of data to which a particular correlation coefficient corresponds are identified by their item numbers in Table I.

r(A2, A3) = 0.348 r(A5, A20) = 0.114 r(A25, A27) = 0.544 r(A30, A44) = 0.991
r(A2, A4) = 0.453 r(A6, A9) = 0.028 r(A25, A28) = 0.610 r(A31, A32) = 0.049
r(A2, A5) = 0.090 r(A6, A10) = 0.055 r(A25, A29) = 0.434 r(A33, A34) = 0.049
r(A2, A6) = 0.121 r(A6, A16) = 0.151 r(A25, A30) = 0.393 r(A35, A36) = 0.786
r(A2, A9) = 0.023 r(A6, A17) = 0.165 r(A25, A41) = 0.954 r(A35, A45) = 0.962

r(A2, A10) = 0.045 r(A6, A18) = 0.175 r(A25, A42) = 0.936 r(A35, A46) = 0.716
r(A2, A16) = 0.123 r(A6, A19) = 0.121 r(A25, A43) = 0.517 r(A36, A45) = 0.716
r(A2, A17) = 0.133 r(A6, A20) = 0.152 r(A25, A44) = 0.320 r(A36, A46) = 0.962
r(A2, A18) = 0.142 r(A7, A8) = 0.105 r(A26, A27) = 0.543 r(A37, A38) = 0.812
r(A2, A19) = 0.098 r(A7, A21) = 0.210 r(A26, A28) = 0.609 r(A37, A39) = 0.810
r(A2, A20) = 0.124 r(A7, A22) = 0.040 r(A26, A29) = 0.434 r(A37, A40) = 0.810
r(A3, A4) = 0.470 r(A8, A21) = 0.027 r(A26, A30) = 0.393 r(A37, A47) = 0.962
r(A3, A5) = 0.093 r(A8, A22) = 0.047 r(A26, A41) = 0.921 r(A37, A48) = 0.745
r(A3, A6) = 0.125 r(A9, A10) = 0.141 r(A26, A42) = 0.951 r(A37, A49) = 0.745
r(A3, A9) = 0.023 r(A9, A16) = 0.028 r(A26, A43) = 0.511 r(A38, A39) = 0.807

r(A3, A10) = 0.047 r(A9, A17) = 0.031 r(A26, A44) = 0.317 r(A38, A40) = 0.807
r(A3, A16) = 0.127 r(A9, A18) = 0.033 r(A27, A28) = 0.338 r(A38, A47) = 0.744
r(A3, A17) = 0.139 r(A9, A19) = 0.023 r(A27, A29) = 0.241 r(A38, A48) = 0.740
r(A3, A18) = 0.147 r(A9, A20) = 0.028 r(A27, A30) = 0.218 r(A38, A49) = 0.740
r(A3, A19) = 0.102 r(A10, A16) = 0.056 r(A27, A41) = 0.516 r(A39, A40) = 0.806
r(A3, A20) = 0.128 r(A10, A17) = 0.061 r(A27, A42) = 0.518 r(A39, A47) = 0.741
r(A4, A5) = 0.121 r(A10, A18) = 0.065 r(A27, A43) = 0.286 r(A39, A48) = 0.961
r(A4, A6) = 0.162 r(A10, A19) = 0.045 r(A27, A44) = 0.177 r(A39, A49) = 0.737
r(A4, A9) = 0.030 r(A10, A20) = 0.057 r(A28, A29) = 0.270 r(A40, A47) = 0.741

r(A4, A10) = 0.060 r(A11, A12) = 0.083 r(A28, A30) = 0.244 r(A40, A48) = 0.737
r(A4, A16) = 0.165 r(A16, A17) = 0.570 r(A28, A41) = 0.578 r(A40, A49) = 0.961
r(A4, A17) = 0.180 r(A16, A18) = 0.612 r(A28, A42) = 0.581 r(A41, A42) = 0.972
r(A4, A18) = 0.191 r(A16, A19) = 0.123 r(A28, A43) = 0.980 r(A41, A43) = 0.540
r(A4, A19) = 0.132 r(A16, A20) = 0.155 r(A28, A44) = 0.198 r(A41, A44) = 0.333
r(A4, A20) = 0.166 r(A17, A18) = 0.667 r(A29, A30) = 0.174 r(A42, A43) = 0.538
r(A5, A6) = 0.475 r(A17, A19) = 0.134 r(A29, A41) = 0.410 r(A42, A44) = 0.333
r(A5, A9) = 0.021 r(A17, A20) = 0.169 r(A29, A42) = 0.413 r(A43, A44) = 0.184

r(A5, A10) = 0.041 r(A18, A19) = 0.142 r(A29, A43) = 0.228 r(A45, A46) = 0.717
r(A5, A16) = 0.113 r(A18, A20) = 0.179 r(A29, A44) = 0.141 r(A47, A48) = 0.748
r(A5, A17) = 0.123 r(A19, A20) = 0.522 r(A30, A41) = 0.371 r(A47, A49) = 0.748
r(A5, A18) = 0.130 r(A21, A22) = 0.011 r(A30, A42) = 0.373 r(A48, A49) = 0.741
r(A5, A19) = 0.090 r(A25, A26) = 0.979 r(A30, A43) = 0.206

included in the more general expression for atomic energy
levels, which replaces Eq. (A1) (Barker and Glover, 1955;
Sapirstein and Yennie, 1990):

EM = Mc2 + [f(n, j)− 1]mrc
2 − [f(n, j)− 1]2

m2
r c

2

2M

+
1− δl0
κ(2l + 1)

(Zα)4m3
r c

2

2n3m2
N

+ · · · , (A3)

where

f(n, j) =
[
1 +

(Zα)2

(n− δ)2

]−1/2

, (A4)

M = me + mN, and mr = memN/(me + mN) is the
reduced mass.

2. Relativistic recoil

Relativistic corrections to Eq. (A3) associated with
motion of the nucleus are considered relativistic-recoil
corrections. The leading term, to lowest order in Zα and
all orders in me/mN, is (Erickson, 1977; Sapirstein and
Yennie, 1990)

ES =
m3

r

m2
emN

(Zα)5

πn3
mec

2

×
{

1
3δl0 ln(Zα)−2 − 8

3 ln k0(n, l)− 1
9δl0 −

7
3an

− 2
m2

N −m2
e

δl0

[
m2

N ln
(me

mr

)
−m2

e ln
(mN

mr

)]}
,

(A5)
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where

an = −2

[
ln

( 2
n

)
+

n∑
i=1

1
i

+ 1− 1
2n

]
δl0

+
1− δl0

l(l + 1)(2l + 1)
. (A6)

To lowest order in the mass ratio, higher-order cor-
rections in Zα have been extensively investigated; the
contribution of the next two orders in Zα can be written
as

ER =
me

mN

(Zα)6

n3
mec

2

×
[
D60 +D72Zα ln2 (Zα)−2 + · · ·

]
, (A7)

where for nS1/2 states (Eides and Grotch, 1997b;
Pachucki and Grotch, 1995)

D60 = 4 ln 2− 7
2

(A8)

and for states with l ≥ 1 (Elkhovskĭı, 1996; Golosov,
Elkhovskĭı, Mil’shtĕın, and Khriplovich, 1995; Jentschura
and Pachucki, 1996)

D60 =
[
3− l(l + 1)

n2

]
2

(4l2 − 1)(2l + 3)
. (A9)

[As usual, the first subscript on the coefficient refers
to the power of Zα and the second subscript to the
power of ln(Zα)−2.] The next coefficient in Eq. (A7) has
been calculated recently with the result (Melnikov and
Yelkhovsky, 1999; Pachucki and Karshenboim, 1999)

D72 = − 11
60π

δl0 . (A10)

The relativistic recoil correction used in the 2002 adjust-
ment is based on Eqs. (A5) to (A10). Numerical val-
ues for the complete contribution of Eq. (A7) to all or-
ders in Zα have been obtained by Shabaev, Artemyev,
Beier, and Soff (1998). While these results are in gen-
eral agreement with the values given by the power series
expressions, the difference between them for S states is
about three times larger than expected [based on the
uncertainty quoted by Shabaev et al. (1998) and the es-
timated uncertainty of the truncated power series which
is taken to be one-half the contribution of the term pro-
portional to D72, as suggested by Eides et al. (2001b)].
This difference is not critical, and we allow for the ambi-
guity by assigning an uncertainty for S states of 10 % of
the contribution given by Eq. (A7). This is sufficiently
large that the power series value is consistent with the
numerical all-order calculated value. For the states with
l ≥ 1, we assign an uncertainty of 1 % of the contribu-
tion in Eq. (A7). The covariances of the theoretical val-
ues are calculated by assuming that the uncertainties are
predominately due to uncalculated terms proportional to
(me/mN)/n3.

3. Nuclear polarization

Another effect involving specific properties of the nu-
cleus, in addition to relativistic recoil, is nuclear polariza-
tion. It arises from interactions between the electron and
nucleus in which the nucleus is excited from the ground
state to virtual higher states.

For hydrogen, the result that we use for the nuclear
polarization is (Khriplovich and Sen’kov, 2000)

EP(H) = −0.070(13)h
δl0
n3

kHz . (A11)

Lager values for this correction have been reported by
Martynenko and Faustov (2000); Rosenfelder (1999), but
apparently they are based on an incorrect formulation of
the dispersion relations (Eides et al., 2001b; Khriplovich
and Sen’kov, 2000).

For deuterium, to a good approximation, the polariz-
ability of the nucleus is the sum of the proton polarizabil-
ity, the neutron polarizibility (Khriplovich and Sen’kov,
1998), and the dominant nuclear structure polarizibility
(Friar and Payne, 1997a), with the total given by

EP(D) = −21.37(8)h
δl0
n3

kHz . (A12)

We assume that this effect is negligible in states of higher
l.

4. Self energy

The second order (in e, first order in α) level shift due
to the one-photon electron self energy, the lowest-order
radiative correction, is given by

E
(2)
SE =

α

π
(Zα)4

n3
F (Zα)mec

2 , (A13)

where

F (Zα) = A41 ln(Zα)−2 +A40 +A50 (Zα)
+A62 (Zα)2 ln2(Zα)−2 +A61 (Zα)2 ln(Zα)−2

+GSE(Zα) (Zα)2 , (A14)

with (Erickson and Yennie, 1965)

A41 = 4
3 δl0

A40 = − 4
3 ln k0(n, l) + 10

9 δl0 −
1

2κ(2l + 1)
(1− δl0)

A50 =
(

139
32 − 2 ln 2

)
π δl0 (A15)

A62 = −δl0

A61 =
[
4

(
1 +

1
2

+ · · ·+ 1
n

)
+

28
3

ln 2− 4 lnn

− 601
180

− 77
45n2

]
δl0 +

(
1− 1

n2

) (
2
15

+
1
3
δj 1

2

)
δl1

+
96n2 − 32l(l + 1)

3n2(2l − 1)(2l)(2l + 1)(2l + 2)(2l + 3)
(1− δl0) .
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TABLE III Bethe logarithms ln k0(n, l) relevant to the deter-
mination of R∞.

n S P D

1 2.984 128 556
2 2.811 769 893 −0.030 016 709
3 2.767 663 612
4 2.749 811 840 −0.041 954 895 −0.006 740 939
6 2.735 664 207 −0.008 147 204
8 2.730 267 261 −0.008 785 043
12 −0.009 342 954

Bethe logarithms ln k0(n, l) that appear in Eq. (A15)
needed for this work are given in Table III (Drake and
Swainson, 1990).

The function GSE(Zα) in Eq. (A14) gives the higher-
order contribution (in Zα) to the self energy, and the
values for GSE(α) that we use here are listed in Ta-
ble IV. For the states with n = 1 and n = 2, the
values in the table are based on direct numerical eval-
uations by Jentschura, Mohr, and Soff (1999, 2001). The
values of GSE(α) for higher-n states are based on the
low-Z limit of this function, GSE(0) = A60, in the cases
where it is known, together with extrapolations of the
results of complete numerical calculations of F (Zα) [see
Eq. (A14)] at higher Z (Kotochigova, Mohr, and Tay-
lor, 2002; Le Bigot, Jentschura, Mohr, and Indelicato,
2003). There is a long history of calculations of A60 (Ei-
des et al., 2001b), leading up to the accurate values of
A60 for the 1S and 2S states obtained by Pachucki (1992,
1993b, 1999). Values for P and D states subsequently
have been reported by Jentschura and Pachucki (1996);
Jentschura, Le Bigot, Mohr, Indelicato, and Soff (2003);
Jentschura, Soff, and Mohr (1997). Extensive numerical
evaluations of F (Zα) at higher Z, which in turn yield
values for GSE(Zα), have been done by Indelicato and
Mohr (1998); Le Bigot (2001); Mohr (1992); Mohr and
Kim (1992).

The dominant effect of the finite mass of the nucleus on
the self energy correction is taken into account by mul-
tiplying each term of F (Zα) by the reduced-mass fac-
tor (mr/me)3, except that the magnetic moment term
−1/[2κ(2l+1)] in A40 is instead multiplied by the factor
(mr/me)2. In addition, the argument (Zα)−2 of the log-
arithms is replaced by (me/mr)(Zα)−2 (Sapirstein and
Yennie, 1990).

The uncertainty of the self energy contribution to a
given level arises entirely from the uncertainty of GSE(α)
listed in Table IV and is taken to be entirely of type un.

5. Vacuum polarization

The second-order vacuum-polarization level shift, due
to the creation of a virtual electron-positron pair in the
exchange of photons between the electron and the nu-

cleus, is

E
(2)
VP =

α

π
(Zα)4

n3
H(Zα)mec

2 , (A16)

where the function H(Zα) is divided into the part cor-
responding to the Uehling potential, denoted here by
H(1)(Zα), and the higher-order remainder H(R)(Zα)
= H(3)(Zα) +H(5)(Zα) + · · · , where the superscript de-
notes the order in powers of the external field. The indi-
vidual terms are expanded in a power series in Zα as

H(1)(Zα) = V40 + V50 (Zα) + V61 (Zα)2 ln(Zα)−2

+G
(1)
VP(Zα) (Zα)2 (A17)

H(R)(Zα) = G
(R)
VP (Zα) (Zα)2 , (A18)

with

V40 = − 4
15
δl0

V50 =
5
48

π δl0 (A19)

V61 = − 2
15
δl0 .

The part G(1)
VP(Zα) arises from the Uehling potential,

and is readily calculated numerically (Kotochigova et al.,
2002; Mohr, 1982); values are given in Table V. The
higher-order remainder G(R)

VP (Zα) has been considered by
Wichmann and Kroll, and the leading terms in powers of
Zα are (Mohr, 1975, 1983; Wichmann and Kroll, 1956)

G
(R)
VP (Zα) =

(
19
45

− π2

27

)
δl0

+
(

1
16

− 31π2

2880

)
π(Zα)δl0 + · · · . (A20)

Higher-order terms omitted from Eq. (A20) are negligi-
ble.

In a manner similar to that for the self energy, the
leading effect of the finite mass of the nucleus is taken into
account by multiplying Eq. (A16) by the factor (mr/me)3
and including a multiplicative factor of (me/mr) in the
argument of the logarithm in Eq. (A17).

There is also a second-order vacuum polarization level
shift due to the creation of virtual particle pairs other
than the e+e− pair. The predominant contribution for
nS states arises from µ+µ−, with the leading term being
(Eides and Shelyuto, 1995; Karshenboim, 1995)

E
(2)
µVP =

α

π
(Zα)4

n3

(
− 4

15

) (
me

mµ

)2 (
mr

me

)3

mec
2 .

(A21)

The next order term in the contribution of muon vacuum
polarization to nS states is of relative order Zαme/mµ
and is therefore negligible. The analogous contribution
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TABLE IV Values of the function GSE(α).

n S1/2 P1/2 P3/2 D3/2 D5/2

1 −30.290 24(2)
2 −31.185 15(9) −0.973 5(2) −0.486 5(2)
3 −31.01(6)
4 −30.87(5) −1.165(2) −0.611(2) 0.031(1)
6 −30.82(8) 0.034(2)
8 −30.80(9) 0.008(5) 0.034(2)

12 0.009(5) 0.035(2)

TABLE V Values of the function G
(1)
VP(α).

n S1/2 P1/2 P3/2 D3/2 D5/2

1 −0.618 724
2 −0.808 872 −0.064 006 −0.014 132
3 −0.814 530
4 −0.806 579 −0.080 007 −0.017 666 −0.000 000
6 −0.791 450 −0.000 000
8 −0.781 197 −0.000 000 −0.000 000

12 −0.000 000 −0.000 000

E
(2)
τVP from τ+τ− (−18 Hz for the 1S state) is also negli-

gible at the level of uncertainty of current interest.
For the hadronic vacuum polarization contribution, we

take the result given by Friar, Martorell, and Sprung
(1999) that utilizes all available e+e− scattering data:

E
(2)
had VP = 0.671(15)E(2)

µVP , (A22)

where the uncertainty is of type u0.
The muonic and hadronic vacuum polarization contri-

butions are negligible for P and D states.

6. Two-photon corrections

Corrections from two virtual photons, of order α2, have
been calculated as a power series in Zα:

E(4) =
(α

π

)2 (Zα)4

n3
mec

2F (4)(Zα) , (A23)

where

F (4)(Zα) = B40 +B50 (Zα) +B63 (Zα)2 ln3(Zα)−2

+B62 (Zα)2 ln2(Zα)−2

+B61 (Zα)2 ln(Zα)−2 +B60 (Zα)2

+ · · · . (A24)

The leading term B40 is well known:

B40 =
[
3π2

2
ln 2− 10π2

27
− 2179

648
− 9

4
ζ(3)

]
δl0

+
[

π2 ln 2
2

− π2

12
− 197

144
− 3ζ(3)

4

]
1− δl0
κ(2l + 1)

.

(A25)

The second term has been calculated by Eides,
Grotch, and Shelyuto (1997); Eides and Shelyuto (1995);
Pachucki (1993a, 1994) with the result

B50 = −21.5561(31)δl0 . (A26)

The next coefficient, as obtained by Karshenboim
(1993); Manohar and Stewart (2000); Pachucki (2001);
Yerokhin (2000), is

B63 = − 8
27
δl0 . (A27)

For S states the coefficient B62 has been found to be

B62 =
16
9

[
71
60

− ln 2 + γ + ψ(n)− lnn− 1
n

+
1

4n2

]
,

(A28)

where γ = 0.577... is Euler’s constant and ψ is the psi
function (Abramowitz and Stegun, 1965). The difference
B62(1) − B62(n) was calculated by Karshenboim (1996)
and confirmed by Pachucki (2001) who also calculated
the n-independent additive constant. For P states the
calculated value is (Karshenboim, 1996)

B62 =
4
27
n2 − 1
n2

. (A29)

This result has been confirmed by Jentschura and
Nándori (2002) who also show that for D and higher an-
gular momentum states B62 = 0.

The single-logarithm coefficient B61 for S states is
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TABLE VI Values of N used in the 2002 adjustment

n N

1 17.855 672(1)
2 12.032 209(1)
3 10.449 810(1)
4 9.722 413(1)
6 9.031 832(1)
8 8.697 639(1)

given by (Pachucki, 2001)

B61 =
39 751
10 800

+
4N(n)

3
+

55π2

27
− 616 ln 2

135
+

3π2 ln 2
4

+
40 ln2 2

9
− 9 ζ(3)

8
+

(
304
135

− 32 ln 2
9

)
×

[
3
4

+ γ + ψ(n)− lnn− 1
n

+
1

4n2

]
, (A30)

where N(n) is a term that was numerically evaluated
for the 1S state by Pachucki (2001). Jentschura (2003)
has evaluated N(n) for excited S states with n = 2 to
n = 8, has made an improved evaluation for n = 1, and
has given an approximate fit to the calculated results in
order to extend them to higher n. Values of the function
N(n) for the states of interest here are given in Table VI.
The value at n = 12 is based on the extrapolation formula
of Jentschura (2003). There are no results yet for P or
D states for B61. Based on the relative magnitude of
A61 for the S, P, and D states, we take as uncertainties
un(B61) = 5.0 for P states and un(B61) = 0.5 for D
states.

The two-loop Bethe logarithm bL, which is expected
to be the dominant part of the no-log term B60, has
been calculated for the 1S and 2S states by Pachucki
and Jentschura (2003) who obtained

bL = −81.4(3) 1S state (A31a)
bL = −66.6(3) 2S state . (A31b)

An additional contribution for S states,

bM =
10
9
N , (A32)

was derived by Pachucki (2001), where N is given in Ta-
ble VI as a function of the state n. These contributions
can be combined to obtain an estimate for the coefficient
B60 for S states:

B60 = bL +
10
9
N + · · · , (A33)

where the dots represent uncalculated contributions to
B60 which are at the relative level of 15 % (Pachucki and
Jentschura, 2003). In order to obtain an approximate
value for B60 for S states with n ≥ 3, we employ a simple
extrapolation formula,

bL = a+
b

n
, (A34)

TABLE VII Values of bL and B60 used in the 2002 adjustment

n bL B60

1 −81.4(3) −61.6(9.2)
2 −66.6(3) −53.2(8.0)
3 −61.7(5.0) −50.1(9.0)
4 −59.2(5.0) −48.4(8.8)
6 −56.7(5.0) −46.7(8.6)
8 −55.5(5.0) −45.8(8.5)

with a and b fitted to the 1S and 2S values of bL, and we
include a component of uncertainty u0(bL) = 5.0. The
results for bL, along with the total estimated values ofB60

for S states, is given in Table VII. For P states, there is a
calculation of fine-structure differences (Jentschura and
Pachucki, 2002), but because of the uncertainty in B61 for
P states, we do not include this result. We assume that
for both the P and D states, the uncertainty attributed
to B61 is sufficiently large to account for the uncertainty
in B60 and higher-order terms as well.

As in the case of the order α self-energy and vacuum-
polarization contributions, the dominant effect of the fi-
nite mass of the nucleus is taken into account by mul-
tiplying each term of the two-photon contribution by
the reduced-mass factor (mr/me)3, except that the mag-
netic moment term, the second line of Eq. (A25), is in-
stead multiplied by the factor (mr/me)2. In addition,
the argument (Zα)−2 of the logarithms is replaced by
(me/mr)(Zα)−2.

7. Three-photon corrections

The leading contribution from three virtual photons is
assumed to have the form

E(6) =
(α

π

)3 (Zα)4

n3
mec

2 [C40 + C50(Zα) + · · · ] ,

(A35)

in analogy with Eq. (A23) for two photons. The level
shifts of order (α/π)3(Zα)4mec

2 that contribute to C40

can be characterized as the sum of a self-energy correc-
tion, a magnetic-moment correction, and a vacuum polar-
ization correction. The self-energy correction arises from
the slope of the Dirac form factor, and it has recently
been calculated by Melnikov and Ritbergen (2000) who
obtained

E
(6)
SE =

(α
π

)3 (Zα)4

n3
mec

2

[
− 868 a4

9
+

25 ζ(5)
2

−17 π2 ζ(3)
6

− 2929 ζ(3)
72

− 217 ln4 2
54

−103 π2 ln2 2
270

+
41 671 π2 ln 2

540
+

3899 π4

6480

−454 979 π2

9720
− 77 513

46 656

]
δl0 , (A36)
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where ζ is the Riemann zeta function and a4 =∑∞
n=1 1/(2n n4) = 0.517 479 061 . . . . The magnetic-

moment correction comes from the known three-loop
electron anomalous magnetic moment (Laporta and
Remiddi, 1996), and is given by

E
(6)
MM =

(α
π

)3 (Zα)4

n3
mec

2

[
− 100 a4

3
+

215 ζ(5)
24

−83 π2 ζ(3)
72

− 139 ζ(3)
18

− 25 ln4 2
18

+
25 π2 ln2 2

18
+

298 π2 ln 2
9

+
239 π4

2160

−17 101 π2

810
− 28 259

5184

]
1

κ(2l + 1)
, (A37)

and the vacuum-polarization correction is (Baikov and
Broadhurst, 1995; Eides and Grotch, 1995a)

E
(6)
VP =

(α
π

)2 (Zα)4

n3
mec

2

[
− 8135 ζ(3)

2304
+

4 π2 ln 2
15

−23 π2

90
+

325 805
93 312

]
δl0 . (A38)

The total for C40 is

C40 =
[
− 568 a4

9
+

85 ζ(5)
24

−121 π2 ζ(3)
72

− 84 071 ζ(3)
2304

− 71 ln4 2
27

−239 π2 ln2 2
135

+
4787 π2 ln 2

108
+

1591 π4

3240

−252 251 π2

9720
+

679 441
93 312

]
δl0

+
[
− 100 a4

3
+

215 ζ(5)
24

−83 π2 ζ(3)
72

− 139 ζ(3)
18

− 25 ln4 2
18

+
25 π2 ln2 2

18
+

298 π2 ln 2
9

+
239 π4

2160

−17 101 π2

810
− 28 259

5184

]
1− δl0
κ(2l + 1)

.

(A39)

An uncertainty in the three-photon correction is as-
signed by taking u0(C50) = 30δl0 and un(C63) = 1, where
C63 is defined by the usual convention.

The dominant effect of the finite mass of the nucleus
is taken into account by multiplying C40 in Eq. (A39) by
the reduced-mass factor (mr/me)3 for l = 0 or by the
factor (mr/me)2 for l 6= 0.

The contribution from four photons is expected to be
of order (α

π

)4 (Zα)4

n3
mec

2 , (A40)

which is about 10 Hz for the 1S state and is negligible at
the level of uncertainty of current interest.

8. Finite nuclear size

At low Z, the leading contribution due to the finite
size of the nucleus is

E
(0)
NS = ENSδl0 , (A41)

with

ENS =
2
3

(
mr

me

)3 (Zα)2

n3
mec

2

(
ZαRN

λC

)2

, (A42)

where RN is the bound-state root-mean-square (rms)
charge radius of the nucleus and λC is the Compton wave-
length of the electron divided by 2π. The leading higher-
order contributions have been examined by Friar (1979b);
Friar and Payne (1997b); Karshenboim (1997) [see also
Borisoglebsky and Trofimenko (1979); Mohr (1983)]. The
expressions that we employ to evaluate the nuclear size
correction are the same as those discussed in more detail
in CODATA-98.

For S states the leading and next-order corrections are
given by

ENS = ENS

{
1− Cη

mr

me

RN

λC
Zα−

[
ln

(
mr

me

RN

λC

Zα

n

)

+ψ(n) + γ − (5n+ 9)(n− 1)
4n2

− Cθ

]
(Zα)2

}
,

(A43)

where Cη and Cθ are constants that depend on the details
of the assumed charge distribution in the nucleus. The
values used here are Cη = 1.7(1) and Cθ = 0.47(4) for
hydrogen or Cη = 2.0(1) and Cθ = 0.38(4) for deuterium.

For the P1/2 states in hydrogen the leading term is

ENS = ENS
(Zα)2(n2 − 1)

4n2
. (A44)

For P3/2 states and D states the nuclear-size contribution
is negligible.

9. Nuclear-size correction to self energy and vacuum
polarization

In addition to the direct effect of finite nuclear size on
energy levels, its effect on the self energy and vacuum
polarization contributions must also be considered. This
same correction is sometimes called the radiative correc-
tion to the nuclear-size effect.

For the self energy, the additional contribution due to
the finite size of the nucleus is (Eides and Grotch, 1997a;
Milstein, Sushkov, and Terekhov, 2002, 2003a; Pachucki,
1993c)

ENSE =
(

4 ln 2− 23
4

)
α(Zα)ENSδl0 , (A45)
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and for the vacuum polarization it is (Eides and Grotch,
1997a; Friar, 1979a; Hylton, 1985)

ENVP =
3
4
α(Zα)ENSδl0 . (A46)

For the self-energy term, higher-order size corrections
for S states (Milstein et al., 2002) and size corrections for
P states have been calculated (Jentschura, 2003; Milstein,
Sushkov, and Terekhov, 2003b), but these corrections are
negligible for the current work, and are not included. The
D-state corrections are assumed to be negligible.

10. Radiative-recoil corrections

The dominant effect of nuclear motion on the self
energy and vacuum polarization has been taken into
account by including appropriate reduced-mass factors.
The additional contributions beyond this prescription are
termed radiative-recoil effects with leading terms given
by

ERR =
m3

r

m2
emN

α(Zα)5

π2 n3
mec

2δl0

×
[
6 ζ(3)− 2 π2 ln 2 +

35 π2

36
− 448

27

+
2
3

π(Zα) ln2 (Zα)−2 + · · ·
]
. (A47)

The leading constant term in Eq. (A47) is the sum
of the analytic result for the electron-line contribution
(Czarnecki and Melnikov, 2001; Eides, Grotch, and She-
lyuto, 2001a) and the vacuum-polarization contribution
(Eides and Grotch, 1995b; Pachucki, 1995). This term
agrees with the numerical value (Pachucki, 1995) used
in CODATA-98. The log-squared term has been calcu-
lated by Melnikov and Yelkhovsky (1999); Pachucki and
Karshenboim (1999).

For the uncertainty, we take a term of order
(Zα) ln(Zα)−2 relative to the square brackets in
Eq. (A47) with numerical coefficients 10 for u0 and 1
for un. These coefficients are roughly what one would
expect for the higher-order uncalculated terms.

11. Nucleus self energy

An additional contribution due to the self energy of
the nucleus has been given by Pachucki (1995):

ESEN =
4Z2α(Zα)4

3πn3

m3
r

m2
N

c2

×
[
ln

(
mN

mr(Zα)2

)
δl0 − ln k0(n, l)

]
. (A48)

This correction has also been examined by Eides et al.
(2001b), who consider how it is modified by the effect

of structure of the proton. The structure effect leads
to an additional model-dependent constant in the square
brackets in Eq. (A48).

To evaluate the nucleus self-energy correction, we use
Eq. (A48) and assign an uncertainty u0 that corresponds
to an additive constant of 0.5 in the square brackets for
S states. For P and D states, the correction is small
and its uncertainty, compared to other uncertainties, is
negligible.

12. Total energy and uncertainty

The total energy EX
nLj of a particular level (where L =

S, P, ... and X = H, D) is the sum of the various contri-
butions listed above plus an additive correction δXnLj that
accounts for the uncertainty in the theoretical expression
for EX

nLj . Our theoretical estimate of the value of δXnLj for
a particular level is zero with a standard uncertainty of
u(δXnLj) equal to the square root of the sum of the squares
(rss) of the individual uncertainties of the contributions,
since, as they are defined above, the contributions to the
energy of a given level are independent. (Components of
uncertainty associated with the fundamental constants
are not included here, because they are determined by
the least squares adjustment itself.) Thus we have for
the square of the uncertainty, or variance, of a particular
level

u2(δXnLj) =
∑

i

u2
0i(XLj) + u2

ni(XLj)
n6

, (A49)

where the individual values u0i(XLj)/n3 and
uni(XLj)/n3 are the components of uncertainty
from each of the contributions, labeled by i, discussed
above. (The factors of 1/n3 are isolated so that u0i(XLj)
is explicitly independent of n.)

The covariance of any two δ’s follows from Eq. (F7) of
Appendix F of CODATA-98. For a given isotope X, we
have

u(δXn1Lj , δ
X
n2Lj) =

∑
i

u2
0i(XLj)
(n1n2)3

, (A50)

which follows from the fact that u(u0i, uni) = 0 and
u(un1i, un2i) = 0 for n1 6= n2. We also set

u(δXn1L1j1 , δ
X
n2L2j2) = 0 , (A51)

if L1 6= L2 or j1 6= j2.
For covariances between δ’s for hydrogen and deu-

terium, we have for states of the same n

u(δHnLj , δ
D
nLj)

=
∑
i=ic

u0i(HLj)u0i(DLj) + uni(HLj)uni(DLj)
n6

, (A52)

and for n1 6= n2

u(δHn1Lj , δ
D
n2Lj) =

∑
i=ic

u0i(HLj)u0i(DLj)
(n1n2)3

, (A53)
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where the summation is over the uncertainties common
to hydrogen and deuterium. In most cases, the uncer-
tainties can in fact be viewed as common except for a
known multiplicative factor that contains all of the mass
dependence. We assume

u(δHn1L1j1 , δ
D
n2L2j2) = 0 , (A54)

if L1 6= L2 or j1 6= j2.
The values of u(δXnLj) of interest for the 1998 adjust-

ment are given in Table I of Sec. I, and the nonnegligible
covariances of the δ’s are given in the form of correlation
coefficients in Table II of that section. These coefficients
are as large as 0.991.

Since the transitions between levels are measured in
frequency units (Hz), in order to apply the above equa-
tions for the energy level contributions we divide the the-
oretical expression for the energy difference ∆E of the
transition by the Planck constant h to convert it to a
frequency. Further, since we take the Rydberg constant
R∞ = α2mec/2h (expressed in m−1) rather than the elec-
tron mass me to be an adjusted constant, we replace the
group of constants α2mec

2/2h in ∆E/h by cR∞.

13. Transition frequencies between levels with n = 2

As an indication of the consistency of the theory sum-
marized above and the experimental data, we list values
of the transition frequencies between levels with n = 2 in
hydrogen. These results are based on values of the con-
stants obtained in a variation of the 2002 least squares
adjustment in which the measurements of the directly re-
lated transitions (items A13, A14.1, and A14.2 in Table I)
are not included. The results are

νH(2P1/2 − 2S1/2) = 1 057 844.5(2.6) kHz [2.4× 10−6]

νH(2S1/2 − 2P3/2) = 9 911 197.1(2.6) kHz [2.6× 10−7]
νH(2P1/2 − 2P3/2)

= 10 969 041.57(89) kHz [8.1× 10−8] , (A55)
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